$$S_R = \frac{100}{\overline{X}} \left[\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 \right]^{1/2}$$

where:

 \bar{X} is the mean of N individual measurements of X_i .

If the complete operating system meets the system suitability requirements of the monograph for the drug being tested, proceed as described in paragraph (b) of this section, using the sample solution in lieu of the working standard solution.

[49 FR 34347, Aug. 30, 1984, as amended at 49 FR 44460, Nov. 7, 1984; 50 FR 29209, July 18, 1985]

§ 436.351 High-performance liquid chromatographic assay for amoxicillin and clavulanic acid.

- (a) Apparatus. A suitable high-performance liquid chromatograph equipped with:
- (1) A suitable detection system specified in the monograph for the drug being tested;
- (2) A suitable recording device of at least 25-centimeter deflection;
- (3) A suitable chromatographic data managing system; and
- (4) An analytical column, 10 to 30 centimeters long, packed with a material as defined in the monograph for the drug being tested; and if specified in that monograph, the inlet of this column may be connected to a guard column, 3 to 5 centimeters in length, packed with the same material of 40 to 60 micrometers particle size.
- (b) Procedure. Perform the assay and calculate the drug content using the temperature, instrumental conditions, and calculations specified in the monograph for the drug being tested with a flow rate not to exceed 2.0 milliliters per minute. Use a detector sensitivity setting that gives a peak height for the working standard that is at least 50 percent of scale with typical chart speed of not less than 2.5 millimeters per minute. Use the apparatus described in paragraph (a) of this section; and the reagents and working standard and sample solutions described in the monograph for the drug being tested.

Equilibrate and condition the column by passage of 10 to 15 void volumes of mobile phase followed by five replicate injections of the same volume (between 10 and 20 microliters) of the working standard solution. Allow an operating time sufficiently long to obtain satisfactory separation and elution of the expected components after each injection. The retention times amoxicillin and clavulanic acid are about 2.1 and 1.0 minutes, respectively, under these prescribed conditions. Record the peak responses and calculate the prescribed system suitability requirements as follows:

- (c) *System suitability test.* Using the apparatus and procedure described in this section, test the chromatographic system for assay as follows:
- (1) Tailing factors for the amoxicillin and clavulanic acid peaks. Calculate the tailing factors (*T*), from distances measured along the horizontal line at 5 percent of the peak height above the baseline, as follows:

$$T = \frac{W_{0.05}}{2f}$$

where:

 $W_{0.05}$ =Width of peak at 5 percent height; and f=Horizontal distance from point of ascent to a point coincident with maximum peak height.

(2) Efficiency of the column. Calculate the number of theoretical plates (n) of the column as follows:

$$n = 5.545 \left[\frac{t_R}{W_h} \right]^2$$

where

n=Efficiency, as number of theoretical plates for column;

 t_R =Retention time of amoxicillin or clavulanic acid peaks; and

w_h=Corresponding peak width at half-height.

(3) Resolution factor. Calculate the resolution factor (R) as follows:

$$R = \frac{2(t_2 - t_1)}{w_1 + w_2}$$

where

 t_1 =Retention time of amoxicillin peak;

 t_2 =Retention time of clavulanic acid peak; and

§ 436.352

w₁ and w₂=Widths of the bases of the corresponding peaks obtained by extrapolating the relatively straight sides of the peaks to the baseline.

(4) Coefficient of variation (Relative standard deviation). Calculate the coefficient of variation (S_R in percent) as follows:

$$S_R = \frac{100}{\overline{X}} \left[\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{N - 1} \right]^{1/2}$$

where:

 \bar{X} is the mean of N individual measurements of X_i .

If the complete operating system meets the system suitability requirements of the monograph for the drug being tested, proceed as described in paragraph (b) of this section, using the sample solution in lieu of the working standard solution.

[49 FR 39671, Oct. 10, 1984]

§ 436.352 High-performance liquid chromatographic assay for determining clavam-2-carboxylate content in clavulanate potassium.

(a) *Apparatus.* A suitable high-performance liquid chromatograph equipped with:

(1) A suitable detection system specified in the monograph for the drug being tested;

(2) A suitable recording device of at least 25-centimeter deflection;

(3) A suitable chromatographic data managing system; and

(4) An analytical column, approximately 30 centimeters in length, packed with a material as defined in the monograph for the drug being tested.

(b) Procedure. Perform the assay and calculate the drug content using the temperature, instrumental conditions, and calculations specified in the monograph for the drug being tested with a flow rate not to exceed 0.5 milliliter per minute. Use a detector sensitivity setting that gives a peak height for the working standard that is at least 50 percent of scale with typical chart speed of not less than 2.5 millimeters per minute. Use the apparatus de-

scribed in paragraph (a) of this section; and the mobile phase and working standard and sample solutions described in the monograph for the drug being tested. Equilibrate and condition the column by passage of 10 to 15 void volumes of mobile phase followed by five replicate injections of the same volume (between 10 and 20 microliters) of the working standard solution. Allow an operating time sufficiently long to obtain satisfactory separation and elution of the expected components after each injection. The retention times for clavam-2-carboxylic acid and clavulanic acid are about 10 and 14 minutes, respectively, under these prescribed conditions. The sample solution should be injected at least in duplicate and an average should be taken. For each such series of samples injected, two injections of standard should be made, one before and one after the sample series, and an average should be taken. Record the peak responses and calculate the prescribed system suitability requirements as follows:

- (c) System suitability test. Using the apparatus and procedure described in this section, test the chromatographic system for assay as follows:
- (1) *Tailing factor.* Calculate the tailing factor (*T*), from distances measured along the horizontal line at 5 percent of the peak height above the baseline, as follows:

$$T = \frac{W_{0.05}}{2f}$$

where:

 $W_{0.05}$ =Width of peak at 5 percent height; and f=Horizontal distance from point of ascent to a point coincident with maximum peak height.

(2) Efficiency of the column. Calculate the number of theoretical plates (n) of the column as follows:

$$n = 5.545 \left[\frac{t_R}{W_h} \right]^2$$

where.

n=Efficiency, as number of theoretical plates for column;

 t_R =Retention time of clavam-2-carboxylic acid peak; and

w_h=Corresponding peak width at half-height.